6 Toric Degenerations of Git Quotients , Chow Quotients
نویسنده
چکیده
The moduli spaceM0,n plays important roles in algebraic geometry and theoretical physics. Yet, some basic properties of M 0,n still remain open. For example, M0,n is rational and nearly toric (that is, it contains a toric variety as a Zariski open subset), but it is not a toric variety itself starting from dimension 2 (n ≥ 5). So, a basic question is: Can it be degenerated flatly to a projective toric variety? Finding toric degeneration is important because many calculations may then be done in terms of combinatorial data extracted out of polytopes and/or fans. The main purpose of this note is to answer the above question in affirmative.
منابع مشابه
Equations for Chow and Hilbert Quotients
We give explicit equations for the Chow and Hilbert quotients of a projective scheme X by the action of an algebraic torus T in an auxiliary toric variety. As a consequence we provide GIT descriptions of these canonical quotients, and obtain other GIT quotients of X by variation of GIT quotient. We apply these results to find equations for the moduli space M0,n of stable genus zero n-pointed cu...
متن کاملFiber Fans and Toric Quotients
The GIT chamber decomposition arising from a subtorus action on a polarized quasiprojective toric variety is a polyhedral complex. Denote by Σ the fan that is the cone over the polyhedral complex. In this paper we show that the toric variety defined by the fan Σ is the normalization of the toric Chow quotient of a closely related affine toric variety by a complementary torus.
متن کاملQuotients by non-reductive algebraic group actions
Geometric invariant theory (GIT) was developed in the 1960s by Mumford in order to construct quotients of reductive group actions on algebraic varieties and hence to construct and study a number of moduli spaces, including, for example, moduli spaces of bundles over a nonsingular projective curve [26, 28]. Moduli spaces often arise naturally as quotients of varieties by algebraic group actions,...
متن کاملToric quotients and flips
As my contribution to these proceedings, I will discuss the geometric invariant theory quotients of toric varieties. Specifically, I will show that quotients of the same problem with respect to different linearizations are typically related by a sequence of flips (or more precisely, log flips) in the sense of Mori, which in the quasi-smooth case can be characterized quite precisely. This seems ...
متن کاملGeometric invariant theory and projective toric varieties
We define projective GIT quotients, and introduce toric varieties from this perspective. We illustrate the definitions by exploring the relationship between toric varieties and polyhedra. Geometric invariant theory (GIT) is a theory of quotients in the category of algebraic varieties. Let X be a projective variety with ample line bundle L, and G an algebraic group acting on X, along with a lift...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006